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A mild and efficient gold-catalyzed tandem cyclization to
piperidinyl enol esters has been developed with facilely
available e-N-Boc-protected propargylic esters.

Nitrogen-containing heterocycles are extensively distributed in na-
ture with various biological activities.1 Specifically, a-piperidinyl
ketone is a ubiquitous structure motif in natural alkaloids (Fig. 1).
A variety of synthetic strategies have been advanced to achieve this
substructure, including intra-molecular SN2 aza-cyclization,2 in-
tramolecular aza-Michael addition,3 dearomatization of pyridine4

and nucleophilic addition of cyclic N-acyliminium ions5 etc.
However, there is continuous demanding for developing new
processes to produce such functionalized azacycles.

Fig. 1 Structures of selected natural alkaloids.

Gold-catalyzed reactions of alkynes have drawn much attention
from the synthetic community in recent years, mainly rooting from
the interesting p acid property of gold catalysts and the resultant
formidable molecular diversity.6 Although gold-catalyzed carbon–
nitrogen bond formation has been broadly investigated,7 few
examples were reported on piperidine cyclization. Recently, gold-
catalyzed tandem reactions of alkynyl amines were elegantly
explored as effective protocols to achieve a-piperidinyl ketone
structure motifs, via a facile enone-forming and intramolecular
aza-Michael sequence,8 an effective formal [4+2] synthesis,9 or a
formal alkyne aza-Prins cyclization.10 So new catalysts leading to
piperidine formation, which are active in a mild reaction atmo-
sphere, are still worth searching for, especially for synthetically
significant internal alkynes. We envisioned that piperidinyl enol
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ester, a variation of a-piperidinyl ketone, could be achieved via
tandem [3,3]-rearrangement/allene hydroamination from e-N-
protected propargylic ester (Scheme 1), in an extension of our
interest in gold-catalyzed synthesis.11 Herein we would like to
present our results on this project.

Scheme 1 Gold-catalyzed synthesis of a-piperidinyl enol ester.

With compound 1a as the test substrate, different catalysts were
investigated to evaluate their activity of catalyzing the desired
tandem rearrangement/azacycle formation (Table 1). Simple
gold salts, both AuCl and AuCl3, prompted this transformation
smoothly in moderate yield (entries 1–2). Although AuCl(PPh3)
or AgOTf did not show any catalytic activity respectively, the
combined use of these two noble metal salts afforded the desired
product in 76% yield (entries 3–5). A comparable yield was
obtained with AuCl/AgOTf (1 : 1), but in a greater reaction rate
(120 min vs. 60 min; entry 5 vs. entry 6), which was exceeded
by AuCl3/AgOTf combination achieving a rather better yield in
shorter time (entry 7).12 The data indicated that polar solvents
should be favorable for this catalytic transformation (entries 7–12).
Interestingly, the catalytic systems including gold(III) chloride,
combined with other silver salts than AgOTf, did not provide

Table 1 Optimization of reaction conditions toward a-piperidinyl enol
estera

Entry R Catalystb Solvent Time/min Yield (%)c

1 Me(1a) AuCl MeCN 120 69
2 Me(1a) AuCl3 MeCN 120 62
3 Me(1a) AuCl(PPh3) MeCN 60 \ d

4 Me(1a) AgOTf MeCN 60 \ d

5 Me(1a) AuCl(PPh3)/AgOTf MeCN 120 76
6 Me(1a) AuCl/AgOTf MeCN 60 78
7 Me(1a) AuCl3AgOTf MeCN 45 84
8 Me(1a) AuCl3AgOTf DCM 120 trace
9 Me(1a) AuCl3/AgOTf PhMe 120 \ d

10 Me(1a) AuCl3/AgOTf THF 120 trace
11 Me(1a) AuCl3/AgOTf Et2O 120 trace
12 Me(1a) AuCl3/AgOTf MeNO2 120 67
13 Me(1a) AuCl3/AgBF4 MeCN 80 83
14 Me(1a) AuCl3/AgSbF6 MeCN 120 62
15 OEt(1b) AuCl3/AgOTf MeCN 60 72
16 tBu(1c) AuCl3/AgOTf MeCN 45 83
17 Ph(1d) AuCl3/AgOTf MeCN 30 92

a All reactions were carried out at room temperature. b 5 mol% of catalyst
loading was used for all entries. As for Au/Ag combined catalyst,
AuI/AgI = 1/1 or AuIII/AgI = 1/3. c Isolated yield. The Z/E ratios range
from 1/1 to 2/3. d No desired product could be detected.
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Table 2 Gold-catalyzed cyclization of e-N-Boc-protected propargylic
esters to afford piperidinyl enol estersa

Entry Substrate Time/min
Product; Yield/%b

(Z : E)c

1 1d; R1 = nBu 30 2d; 92 (2 : 3)
2 3a; R1 = isopentyl 30 4a; 83 (2 : 3)
3 3b; R1 = (CH2)3Ph 30 4b; 85 (2 : 3)
4 3d; R1 = (CH2)3OBz 60 4d; 55 (3 : 7)d

5 3e; 60 4e; 81 (2 : 3)
R1 = (CH2)3OTBDPS

6 3f; eR2 = H, R3 = H 60 4f; 50 (1 : 1)
7 3g; eR2 = Ph, R3 = H 60 4g; 53 (1 : 1)
8 3h; R2 = Me, R3 = H 60 4h; 64 (1 : 2)
9 3i; R2 = Me, R3 = Me 60 4i; 75 (1 : 2)
10 3j; R2 = OMe, R3 = H 60 4j; 61 (3 : 2)
11 3k; R2 = OTBDPS, R3 = H 60 4k; 65 (1 : 1)
12 3l; R2 = CO2Et, R3 = H 60 4l; trace

a All reactions were carried out at 0.2 mmol scale in acetonitrile (2 ml)
with AuCl3 (5 mol%) and AgOTf (15 mol%) as the combined catalyst at
room temperature. b Isolated yield. c The Z/E ratios were determined by
1H NMR spectra. d The Z/E ratio is based on the isolated yields of two
isomers. e PG = Bz.

superior results (entries 13–14). Taking the efficiency and the
expense into account, we selected AuCl3/AgOTf as the preferred
catalyst combination. Other propargylic esters were also tested to
acquire the optimal reaction result. To our delight, the benzoate 1d,
as an excellent substrate, affords the top yield, while the pivaloate
1c behaves as well as the acetate 1a (entries 15–17).13

To explore the scope of this catalytic tandem transformation, a
variety of propargylic esters were surveyed in the optimized con-
ditions (Table 2). Acyclic aliphatic alkynes were firstly examined
and internal alkynes (1d, 3a and 3b), are found to be suitable
substrates in satisfactory yields (entries 1–3).14 A distal TBDPS
ether in compound 3e was found to be compatible with the catalyst
very well, while the benzoate at g position of the triple bond in
3d seemingly affects the reaction efficiency unfavorably (entries
4 and 5). Aromatic alkynes were also tested to be appropriate
substrates. Compounds 3f and 3g produce comparable yields,
indicating that a phenyl substitution at para position has minute
influence (entries 6 and 7).15 However, the pivaloates 3h–3k, with
electron-donating groups, such as alkyl, methoxyl and TBDPS
ether at the para position of the benzene ring, show better reactivity
than compound 3l with electron-withdrawing group (entries 7–13).

Based on the yields and stereoselectivities listed above, we
speculate a mechanism as illustrated in Fig. 2. At first, the gold
catalyst acts as a p-acid to activate the triple bond in substrates
and then initiates an intramolecular rearrangement to afford
intermediates II and III, which coexist in a fast equilibrium.16,17

Secondly, the corresponding reactive sites in intermediates II
and III are captured by Boc-protected nitrogen atom, providing
intermediate E-IV and E/Z-V respectively via path a and path b.18

The following protonation of carbon–gold bond converts these

Fig. 2 Tentative mechanism for gold-catalyzed piperidine ring
cyclization.

intermediates to the final E- or E/Z- products. Indeed, in view
of the weak nucleophilicity of carbamate, it seems reasonable that
the direct SN2 attack by Boc-protected nitrogen through path a,
affording E-IV stereospecificly, should not be dominant. Thus
the cyclization through gold-activated allenyl ester III might be
considered as the preferred pathway, albeit without a favored
stereochemical bias, which is consistent with the data in Table 2.

Furthermore, 2◦ amine 3m exhibits excellent reactivity as well
in 91% yield, though without any diastereoselectivity. We suspect
that it might be the imperceptible energy difference between
the two respective transition states (A & B) that accounts for
the insignificant selectivity (kA ª kB, Scheme 2).19 To elucidate
the applicability of our methodology, the facile conversion of
piperidinyl enol esters to piperidinyl ketones was confirmed
by transforming compounds 2d and 4m to the corresponding
ketones 5 and 6 smoothly using potassium carbonate in methanol
(Scheme 3).

Scheme 2 Transition states to compound 4m.

Scheme 3 Conversion to piperidinyl ketone.

In summary, we have developed an efficient method achieving
piperidinyl enol esters and piperidinyl ketones in mild reac-
tion conditions. Compared to intermolecular catalyzed propar-
gylic substitution20 and nucleophilic addition to propargyl
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carboxylates,21 this intramolecular piperidine cyclization method-
ology shows different reactivity and different substrate applicabil-
ity. The tandem cyclization is potentially useful and its application
in total synthesis of natural product is under way in our laboratory.
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